a2zpapers.com

Exam. Code : 211003 Subject Code : 5498

M.Sc. Mathematics 3rd Semester MATH-572 : TOPOLOGY-I

Time Allowed—3 Hours] [Maximum Marks—100 Note :— Attempt two questions from each Unit. All questions carry 10 marks each.

UNIT-I

- 1. Prove that Int (A) = C $(\overline{C(A)})$ for any set A, where C(A) denotes the complement of A in X. Further prove that A is open if and only if A = Int (A).
- 2. Prove that every separable metric space is 2nd countable.
- Let X and Y be topological spaces and f : X → Y a map. Prove that if f⁻¹(B) ⊂ f⁻¹(B) for every B ⊂ Y, then inverse image of each closed set in Y is closed in X.
- 4. If Y is a space satisfying the second axiom of countability, then prove that every open covering $\{U_{\alpha}\}$ has a countable subcovering.

UNIT-II

- 5. (i) Define a connected space and prove that continuous image of a connected space is connected.
 - (ii) Prove that a topological space is locally connected if the components of every open subspace of X are open in X.

4477(2117)/BSS-31209

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

- 6. Prove that a topological space is disconnected if and only if there exist a continuous map of X onto the discrete two point space [0, 1].
- 7. If X is an arbitrary topological space then prove that :
 - (i) Each point in X is contained in exactly one component of X.
 - (ii) Each connected subspace of X is contained in a component of X.
 - (iii) A connected subspace of X which is both open and closed is a component of X.
- Let (X, ℑ) be a space and (Y, ℑ_y) a subspace. Then prove that :

 $\begin{array}{l} A_{Y}=Y\cap\overline{A};\;A'_{Y}=Y\cap A';\;Y\cap\operatorname{Int}(A)\subset\operatorname{Int}_{Y}(A);\\ Fr_{y}(A)\subset Y\cap\operatorname{Fr}(A). \end{array}$

UNIT-III

- Let f: X → Y be closed. Then prove that for all
 S ⊂ X, ∀ open U such that f⁻¹(S) ⊂ U there exist open
 V in Y such that S ⊂ V and f⁻¹(V) ⊂ U.
- 10. Let $f: X \to Y$ be a homeomorphism. Prove that for any $A \subset X$ the map $g = f|_A : A \to f(A)$ is also a homeomorphism.
- 11. (i) If f is a continuous mapping of the topological space X into the topological space Y, and {x_n} is a sequence of points of X which converges to the point x ∈ X, then the sequence {f(x_n)} converges to the point f(x) in Y.
 - (ii) Prove that a map $f : X \to Y$ is open if and only if $\forall A \subset X, f(A^\circ) \subset (f(A))^\circ$.

4477(2117)/BSS-31209

2

(Contd.)

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

12. Let $X = A \cup B$, where A, B are both open or both closed in X. Let $f: X \to Y$ be such that $f|_A$ and $f|_B$ are continuous, then prove that f is also continuous.

UNIT-IV

- 13. In the product space $\Pi_{\alpha} Y_{\alpha}$,
 - (i) If S_{α} is a sub-basis of $(Y_{\alpha}, \mathfrak{I}_{\alpha})$, then prove that the collection $\{\langle V_{\beta} \rangle : V_{\beta} \in S_{\beta}, \beta \in \Lambda\}$ is a sub-basis for $\prod_{\alpha} Y_{\alpha}$.
 - (ii) Let $A_{\alpha} \subset Y_{\alpha}$, then A_{α} has subspace topology on it. Let $\Pi_{\alpha}A_{\alpha}$ has product topology \Im^* . Considering $\Pi_{\alpha}A_{\alpha}$ as a subspace of $\Pi_{\alpha}Y_{\alpha}$, $\Pi_{\alpha}A_{\alpha}$ has the topology \mathcal{T}_* on it, prove that $\Im^* = \mathcal{T}_*$.
- 14. (i) Show that infinite product of non trivial discrete spaces is never discrete.
 - (ii) Prove that $(\prod_{\alpha} A_{\alpha})^{C} = \bigcup_{\alpha} (A_{\alpha})^{C}$.
- 15. Prove that the projection maps are open but they need not be closed.
- 16. Define the quotient space. Prove that if Y is a quotient space of X and Z is a quotient space of Y then Z is homeomorphic to a quotient space of X.

UNIT-V

- 17. Show that a closed subspace of a normal space is normal.
- 18. State and prove Tietz extention theorem.
- 19. Show that a one to one continuous mapping of a compact space onto a Hausdorff space is a homeomorphism.
- 20. Prove that $\Pi_{\alpha} \{ Y_{\alpha} \mid \alpha \in \mathcal{A} \}$ is regular if and only if each Y_{α} is regular.

4477(2117)/BSS-31209

3

1600

www.a2zpapers.com www.a2zpapers.com

bad free old Question papers gndu, ptu hp board, punjab